Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503231

RESUMO

Ferrous sulfate (FeSO4) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO4-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires. The results of chemical extraction and X-ray absorption near edge structure spectroscopy (XANES) showed that the Cr(VI) in contaminated soil was successfully transformed to Cr(III) after stabilization, resulting in the dramatic decrease of water-leachable Cr(VI). The stabilization efficiency was further improved under 40 °C treatment after 30 days. Subsequently, the 120 °C treatment (7 days) had relatively little effect on the Cr speciation and mobility in soils. However, even one day of 500 °C calcination resulted in the deterioration of stabilization efficiency, and the water-leachable Cr(VI) re-increased and became higher than the Chinese environmental standards (total Cr 15 mg/L, Cr(VI) 5 mg/L) for the classification of hazardous solid wastes. XANES results reflected that heating at 500 °C facilitate the formation of Cr2O3, which was mainly caused by thermal decomposition and dehydration of Cr(OH)3 in the soil. Besides, the transformation of Cr species resulted in the enhanced association of Cr with the most stable residual fraction (88.3%-91.6%) in soil. Based on chemical extraction results, it was suggested that the oxidation of Cr(III) to Cr(VI) contributed to the re-increased mobility of Cr(VI) in soil. However, the XANES results showed that almost no significant re-oxidization of Cr(III) to Cr(VI) happened after heating at 500 °C, which was probably caused by XANES linear combination fits (LCF) uncertainties. Moreover, the changes in soil properties, including a rise in pH to a slightly alkaline range and/or the decomposition of organic matter, possibly contributed to the enhanced mobility of Cr(VI) in soil. This study contributes to clarifying the mobility and transformation of Cr in contaminated soils and provides a support for the sustainable management of remediated soils.


Assuntos
Cromo , Compostos Ferrosos , Poluentes do Solo , Temperatura , Cromo/química , Solo/química , Água , Poluentes do Solo/química
2.
Huan Jing Ke Xue ; 44(9): 5080-5091, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699826

RESUMO

The aim of this study was to clarify the response characteristics of Chinese cabbage pakchoi (Brassica chinensis L.) under two particle size (100 nm and 1000 nm) polystyrene microplastic (PS-MPs) stress conditions. This study can provide a theoretical basis and experimental reference for the interpretation of the physiological and ecological mechanism of microplastic pollution and the bioremediation of microplastic-contaminated soil. Hydroponic experiments were carried out to study the effects of two particle sizes (100 nm and 1000 nm) of PS-MPs on growth, photosynthetic physiology, antioxidant enzyme activities, nutritional quality, anatomical structure, and canopy temperature in Chinese cabbage pakchoi. The results showed that PS-MPs stress significantly inhibited the growth and development of Chinese cabbage pakchoi. When PS-MPs stress was increased, the phenotypic indicators were significantly reduced. Meanwhile, PS-MPs stress significantly enhanced the oxidative stress response of Chinese cabbage pakchoi, such as the activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX) and the content of malondialdehyde (MDA) in leaves. Such a change tended to decrease the thickness of fenestrated and leaf and spongy tissues. Moreover, PS-MPs stress significantly increased the canopy population temperature of the Chinese cabbage pakchoi leaves. Microplastic stress had obvious inhibitory effects and toxic damage on the growth, development, and physical and chemical properties of Chinese cabbage pakchoi.


Assuntos
Brassica , Microplásticos , Plásticos , Poliestirenos/toxicidade , Temperatura
3.
Environ Sci Technol ; 57(47): 19033-19042, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37384585

RESUMO

The increasing presence of antibiotics in water sources threatens public health and ecosystems. Various treatments have been previously applied to degrade antibiotics, yet their efficiency is commonly hindered by the presence of natural organic matter (NOM) in water. On the contrary, we show here that nine types of NOM and NOM model compounds improved the removal of trimethoprim and sulfamethoxazole by ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. This is probably associated with the presence of phenolic moieties in NOMs, as suggested by first-order kinetics using NOM, phenol, and hydroquinone. Electron paramagnetic resonance reveals that NOM radicals are generated within milliseconds in the Fe(VI)-NOM system via single-electron transfer from NOM to Fe(VI) with the formation of Fe(V). The dominance of the Fe(V) reaction with antibiotics resulted in their enhanced removal despite concurrent reactions between Fe(V) and NOM moieties, the radicals, and water. Kinetic modeling considering Fe(V) explains the enhanced kinetics of antibiotics abatement at low phenol concentrations. Experiments with humic and fulvic acids of lake and river waters show similar results, thus supporting the enhanced abatement of antibiotics in real water situations.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Ecossistema , Poluentes Químicos da Água/análise , Oxirredução , Fenóis , Água , Fenol , Purificação da Água/métodos , Cinética
4.
ACS Appl Mater Interfaces ; 15(9): 11875-11884, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808943

RESUMO

A photorechargeable device can generate power from sunlight and store it in one device, which has a broad application prospect in the future. However, if the working state of the photovoltaic part in the photorechargeable device deviates from the maximum power point, its actual power conversion efficiency will reduce. The strategy of voltage match on the maximum power point is reported to achieve a high overall efficiency (ηoa) of the photorechargeable device assembled by a passivated emitter and rear cell (PERC) solar cell and Ni-based asymmetric capacitors. According to matching the voltage of the maximum power point of the photovoltaic part, the charging characteristics of the energy storage part are adjusted to realize a high actual power conversion efficiency of the photovoltaic part (ηpv). The ηpv of a Ni(OH)2-rGO-based photorechargeable device is 21.53%, and the ηoa is up to 14.55%. This strategy can promote further practical application for the development of photorechargeable devices.

5.
ACS Omega ; 8(7): 6289-6301, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844583

RESUMO

Nanosized battery-type materials applied in electrochemical capacitors can effectively reduce a series of problems caused by low conductivity and large volume changes. However, this approach will lead to the charging and discharging process being dominated by capacitive behavior, resulting in a serious decline in the specific capacity of the material. By controlling the material particles to an appropriate size and a suitable number of nanosheet layers, the battery-type behavior can be retained to maintain a large capacity. Here, Ni(OH)2, which is a typical battery-type material, is grown on the surface of reduced graphene oxide to prepare a composite electrode. By controlling the dosage of the nickel source, the composite material with an appropriate Ni(OH)2 nanosheet size and a suitable number of layers was prepared. The high-capacity electrode material was obtained by retaining the battery-type behavior. The prepared electrode had a specific capacity of 397.22 mA h g-1 at 2 A g-1. After the current density was increased to 20 A g-1, the retention rate was as high as 84%. The prepared asymmetric electrochemical capacitor had an energy density of 30.91 W h kg-1 at a power density of 1319.86 W kg-1 and the retention rate could reach 79% after 20,000 cycles. We advocate an optimization strategy that retains the battery-type behavior of electrode materials by increasing the size of nanosheets and the number of layers, which can significantly improve the energy density while combining the advantage of the high rate capability of the electrochemical capacitor.

6.
BMC Plant Biol ; 22(1): 571, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476235

RESUMO

BACKGROUND: Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Cadmium (Cd) is a prevalent heavy metal in the environment. Exposure of Cd, via intake or consumption of Cd-contaminated air or food, poses a huge threat to human health. Chinese cabbage pakchoi (Brassica chinensis L.) is widely planted and consumed as a popular vegetable in China. Therefore, studying the response of Chinese cabbage pakchoi to Cd- stressed conditions is critical to assess whether cabbage can accumulate Cd and serve as an important Cd exposure pathway to human beings. In this study, we investigated the influence of Cd stress on growth, photosynthetic physiology, antioxidant enzyme activities, nutritional quality, anatomical structure, and canopy temperature in Chinese cabbage pakchoi. A partial least squares (PLS) model was used to quantify the relationship between physical and chemical indicators with Cd accumulation in cabbage, and identify the main controlling factors. RESULTS: Results showed that Cd stress significantly inhibited cabbage's growth and development. When Cd stress was increased, the phenotypic indicators were significantly reduced. Meanwhile, Cd stress significantly enhanced the oxidative stress response of cabbage, such as the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and the content of malondialdehyde (MDA) in leaves. Such a change tended to increase fenestrated tissues' thickness but decrease the thickness of leaf and spongy tissues. Moreover, Cd stress significantly increased soluble sugar, protein, and vitamin C contents in leaves as well as the temperature in the plant canopy. The PLS model analysis showed that the studied phenotypic and physicochemical indicators had good relationships with Cd accumulation in roots, shoots, and the whole plant of cabbage, with high coefficient of determination (R2) values of 0.891, 0.811, and 0.845, and low relative percent deviation (RPD) values of 3.052, 2.317, and 2.557, respectively. Furthermore, through analyzing each parameter's variable importance for projection (VIP) value, the SOD activity was identified as a key factor for indicating Cd accumulation in cabbage. Meanwhile, the effects of CAT on Cd accumulation in cabbage and the canopy mean temperature were also high. CONCLUSION: Cd stress has significant inhibitory effects and can cause damage cabbage's growth and development, and the SOD activity may serve as a key factor to indicate Cd uptake and accumulation in cabbage.


Assuntos
Brassica , Cádmio , Cádmio/toxicidade , China , Estresse Fisiológico
7.
Environ Res ; 215(Pt 3): 114333, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167109

RESUMO

Geopolymer is always regarded as a promising material for the immobilization of radioactive waste. In the present study, the stabilization of Cs in geopolymers activated by NaOH and Na2SiO3 solutions and calcined at various temperatures was studied via toxicity characteristic leaching procedure (TCLP), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope and energy dispersive spectroscopy (SEM-EDS), solid-state nuclear magnetic resonance (SSNMR), and N2 adsorption-desorption isotherm. For both NaOH-activated and Na2SiO3-activated geopolymers, the leaching concentrations of Cs decreased with the increase of calcination temperature. Specifically, most of the amorphous substance was crystallized to nepheline at 1000 °C for NaOH-activated geopolymer, and Cs+ can be incorporated into the structure of nepheline, contributing to the reduction of Cs leaching concentration. However, the amorphous structure was still maintained for Na2SiO3-activated geopolymer even after calcination at 1000 °C. It has been deduced that the main structure of Na2SiO3-activated geopolymer after calcination at 1000 °C should be in short-range order and Cs+ can be locked in a micro "crystal" structure. In addition, the change of specific surface area was not fully consistent with the decreasing trend of Cs leaching concentration. Therefore, the inner structure and the specific surface area of geopolymer should have a combined effect on the leaching behavior of Cs. This study can provide new insights into the application of geopolymer to immobilize radionuclides.


Assuntos
Resíduos Radioativos , Compostos de Alumínio , Césio , Silicatos , Compostos de Sódio , Hidróxido de Sódio/química , Temperatura
8.
Environ Pollut ; 308: 119702, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787422

RESUMO

In this study, the feasibility of using zero-valent iron (ZVI) and Fe3O4-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH-, PO43-, and SO42-) released from magnetic biochar. ZVI increased ryegrass production while Fe3O4-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.


Assuntos
Lolium , Poluentes do Solo , Carvão Vegetal/química , Ferro/química , Chumbo/análise , Fenômenos Magnéticos , Óxidos/análise , Areia , Solo/química , Poluentes do Solo/análise
9.
Environ Res ; 214(Pt 1): 113786, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798269

RESUMO

The increasing requirement and consumption of coal has resulted in a large accumulation of coal gangue. The reuse and recycling of coal gangue have become a high priority for sustainable development. A sustainable and efficient ceramsite adsorbent was prepared for copper ions adsorption by using coal gangue, coal fly ash, and copper slag as the main materials. The appropriate performance of the ceramsite could be obtained at a mixture of coal gangue, coal fly ash, and copper slag at a weight ratio of 3:4:1. The optimal sintering temperature and time were 1050 °C and 20 min, respectively. The main crystalline phases of ceramsite were quartz, mullite, and anorthite. Many micropores are connecting the interior on the surface of ceramsite under scanning electron microscope. The maximum copper ions adsorption capacity reached up to 20.6 mg/g at 303 K when pH and time were 5 and 1440 min, respectively. The adsorption kinetics and isotherm could be described by the pseudo-second-order model and Freundlich model, respectively. The adsorption mechanisms of Cu2+ with ceramsite were attributed to Cu(OH)2 precipitation formed on the alkaline surface of ceramsite and complexation reactions occurred between the O-containing groups (including C-O, Fe-O, and Si-O) from ceramsite and Cu2+. The prepared ceramsite may be also applied to other heavy metal wastewater treatments.


Assuntos
Resíduos Industriais , Poluentes Químicos da Água , Adsorção , Carvão Mineral , Cinza de Carvão , Misturas Complexas , Cobre , Íons , Cinética
10.
Environ Sci Technol ; 56(13): 9398-9407, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735903

RESUMO

Electroplating sludge is a hazardous waste due to its high potential to leach toxic elements into the natural environment. To alleviate this issue, we tailored magnesium phosphate cement (MPC) as a low-carbon material for stabilization/solidification (S/S) of Zn-rich electroplating sludge. The interaction between MPC and ZnO was investigated to clarify the precipitate chemistry, microstructure transition, and chemical environment of Zn species in the MPC-treated Zn sludge system. Comprehensive characterization (by X-ray diffraction (XRD), 31P nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure spectroscopy (EXAFS)) and thermodynamic modeling results revealed that the incorporated ZnO preferentially reacted with phosphate to form Zn3(PO4)2·2H2O/Zn3(PO4)2·4H2O, changing the orthophosphate environment in the MPC system. Stronger chemical bonding between Zn and phosphate in comparison to the bonding between Mg and phosphate also resulted in the formation of amorphous Zn3(PO4)2·2H2O/Zn3(PO4)2·4H2O. Zn3(PO4)2·4H2O precipitate appears to predominate at high {K+}{H+}{HPO42-} values, and the formation of Zn3(PO4)2·2H2O/Zn3(PO4)2·4H2O competed for the Mg sites in the MPC system, leading to the inhibition of formation of Mg-phosphate precipitates. Overall, this work uncovers the precipitate chemistry and microstructure transition of Zn species in the MPC system, providing new insights into the sustainable S/S of Zn-contaminated wastes by adopting MPC.


Assuntos
Metais Pesados , Óxido de Zinco , Galvanoplastia , Compostos de Magnésio , Metais Pesados/química , Fosfatos/química , Esgotos/química , Zinco/química
11.
Chemosphere ; 297: 134032, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183577

RESUMO

Intense industrialization has led to the increasing leaching risk of metals into groundwater at heavily polluted industrial sites. However, metal dissolution in polluted industrial soils has been neither fully investigated nor quantified before. In this study, the dissolution of Zn, Ni, and Cu in soil from a heavily contaminated industrial site during a flooding-drainage period was investigated by sequential extraction, geochemical modelling, and X-ray absorption near edge structure spectroscopy. The results showed a steady decrease in metal solubility during both reduction and oxidation stages. During reduction, with limited decrease in Eh (>100 mV), formation of carbonate precipitates rather than sulfide precipitates and adsorption on soil solids was responsible for Zn and Ni dissolution, whereas bound to soil organic matter (SOM) and iron oxides dominated Cu dissolution, due to its lower concentration and higher affinity to SOM and iron oxides compared to Zn and Ni. During oxidation, the acidity caused by ferrous oxidation was buffered by calcite dissolution, while metal precipitation ceased and adsorption on soil surface controlled metal solubility. The metal solubility and speciation during the flooding-drainage process were quantitatively predicted by geochemical model. The findings demonstrate that due to high metal concentrations and weak microbial effect in the industrial soil, metal release was largely regulated by abiotic reactions rather than biotic reactions, which is somehow different from that of the wetland or rice field soils.


Assuntos
Metais Pesados , Poluentes do Solo , Ferro , Metais/análise , Metais Pesados/análise , Óxidos , Solo , Poluentes do Solo/análise , Solubilidade
12.
J Hazard Mater ; 424(Pt A): 127369, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879564

RESUMO

Low-carbon stabilization/solidification (S/S) is of increasing importance as an option for the treatment of municipal solid waste incineration fly ash (MIFA). This study tailored four binders (e.g., ordinary Portland cement (OPC), calcium aluminate cement (CAC), phosphate-modified OPC, and phosphate-modified CAC) for S/S of MIFA and evaluated the cytotoxicity of treated MIFA by using A549 cell-based in-vitro assay. After S/S treatment, the leachability of Cr, Cu, Zn and Pb from MIFA decreased by 76.1%, 93.4%, 69.6%, and 85.5%, respectively. Spectroscopic analysis indicated that the hydration products determined the immobilization efficiencies of various binders, and strong bonding between metallic cations and phosphate enhanced the immobilization efficiency. The treated MIFA showed significantly lower cellular reactive oxygen species (ROS)-inducing abilities than original MIFA, in which with phosphate-modified OPC treated MIFA showed the lowest ROS levels. Intracellular ROS and multicytotoxicity results also revealed that the treated MIFA not only decreased the cytotoxicity-inducing capability but also enhanced the tolerant dosage of cytotoxicity, in which phosphate-modified S/S treatments showed more effective mitigation (25% less cytotoxicity) than plain cement treatments due to the high-efficiency immobilization of potentially toxic elements. This study develops a pioneering assessment protocol to measure the success of sustainable treatment of MIFA in human health perspective.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão/toxicidade , Humanos , Incineração , Metais Pesados/análise , Material Particulado , Resíduos Sólidos/análise
13.
J Hazard Mater ; 423(Pt A): 127025, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481391

RESUMO

Municipal solid waste incineration (MSWI) fly ash is a typical hazardous waste worldwide. In this study, an innovative magnesium oxysulfate cement (MOSC) binder was designed for stabilization/solidification (S/S) of MSWI fly ash, focusing on the interactions between MOSC binder and typical metallic cations (Pb2+)/oxyanions (AsO33-). Experimental results showed that Pb and As slightly inhibited the reaction of high-sulfate 5MS system but significantly suppressed the reaction process of low-sulfate 10MS system. The 5MS binder system exhibited excellent immobilization efficiencies (99.8%) for both Pb and As. The extended X-ray absorption fine structure spectra suggested that Pb2+ coordinated with SO42-/OH- in the MOSC system and substituted Mg2+ ion sites in the internal structure of 5Mg(OH)2·MgSO4.7H2O (5-1-7) phase. In contrast, the AsO33- substituted SO42- sites with the formation of inner-sphere complexes with Mg2+ in the large interlayer space of the 5-1-7 structure. Subsequent MSWI fly ash S/S experiments showed that a small amount of reactive Si in MSWI fly ash interfered with the MOSC reaction and adversely influenced the immobilization efficiencies of Pb, As, and other elements. Through the use of 33 wt% tailored MOSC binder for MSWI fly ash treatment, a satisfying S/S performance could be achieved.

14.
Environ Pollut ; 287: 117333, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000670

RESUMO

Routine waterway dredging activities generate huge volumes of dredged sediment. The remediation of dredged contaminated sediment is a worldwide challenge. Novel and sustainable ex-situ remediation technologies for contaminated sediment have been developed and adopted in recent years. In this review paper, the state-of-art ex-situ treatment technologies and resource utilisation methods for contaminated sediment were critically reviewed. By applying different techniques, sediment could been successfully transformed into sustainable construction materials, such as ceramsite, supplementary cementitious materials, fill materials, paving blocks, partition blocks, ready-mixed concrete, and foamed concrete. We highlighted that proper remediation technologies should be cleverly selected and designed according to the physical and chemical characteristics of sediment, without neglecting important aspects, such as cost, safety, environmental impacts, readiness level of the technology and social acceptability. The combination of different assessment methods (e.g., environmental impact assessment, cost-benefit analysis, multi-criteria decision analysis and life cycle assessment) should be employed to comprehensively evaluate the feasibility of different sustainable remediation technologies. We call on the scientific community in a multidisciplinary fashion to evaluate the sustainability of various remediation technologies for contaminated sediment.


Assuntos
Recuperação e Remediação Ambiental , Meio Ambiente , Sedimentos Geológicos
15.
Environ Pollut ; 274: 116509, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524648

RESUMO

The effect of Si/Al molar ratio of geopolymer on the immobilization of Se and As oxyanions was studied through leaching test and solid characterizations including XRD, FTIR, TG, NMR, XAFS, and N2 adsorption-desorption isotherm. As a whole, the leaching percentages of Se and As oxyanions increased with the increase of the Si/Al molar ratio of geopolymer. Linear combination fitting confirmed that most of selenite, selenate and arsenate ions existed in geopolymers through electrostatic interaction. Thus, Al tetrahedrons in geopolymer structure control the charge stability for these oxyanions to a large extent. Differently, as for arsenate ions, they were recrystallized into an arsenate compound (Na3.25(OH)0.25(H2O)12)(AsO4) in geopolymers. The additive of these pollutants has an adverse effect on the compactness of geopolymer, then influencing the leaching performance in turn. However, the changes in leaching results did not follow the variation trend of specific surface areas and pore volumes of geopolymers with different Si/Al ratios. The number and distribution of Al tetrahedron and compactness of geopolymer have a synergistic effect on the immobilization of these oxyanions. Besides, the compressive strengths of geopolymer samples are always higher than 20 MPa, which meets the requirement of safe disposal of hazardous waste.


Assuntos
Arsênio , Selênio , Adsorção , Resíduos Perigosos , Ácido Selênico
16.
Environ Sci Technol ; 55(3): 1710-1720, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426890

RESUMO

Elucidating the interactions between metal ions and dissolved organic matter and deciphering mechanisms for their mineralization in the aquatic environment are central to understanding the speciation, transport, and toxicity of nanoparticles (NPs). Herein, we examine the interactions between Ag+ and Au3+ ions in mixed solutions (χAg = 0.2, 0.5, and 0.8) in the presence of humic acids (HAs) under simulated sunlight; these conditions result in the formation of bimetallic Ag-Au NPs. A key distinction is that the obtained alloy NPs are compositionally and morphologically rather different from NPs obtained from thermally activated dark processes. Photoillumination triggers a distinctive plasmon-mediated process for HA-assisted reductive mineralization of ions to bimetallic alloy NPs which is not observed in its dark thermal reduction counterpart. The initial nucleation of bimetallic NPs is dominated by differences in the cohesive energies of Ag and Au crystal lattices, whereas the growth mechanisms are governed by the strongly preferred incorporation of Ag ions, which stems from their greater photoreactivity. The bimetallic NPs crystallize in shapes governed by the countervailing influence of minimizing free energy through the adoption of Wulff constructions and the energetic penalties associated with twin faults. As such, assessments of the stability and the potential toxic effects of bimetallic NPs arising from their possible existence in aquatic environments will depend sensitively on the origins of their formation.


Assuntos
Nanopartículas Metálicas , Prata , Ligas , Ouro , Luz Solar
17.
Chemosphere ; 271: 129597, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460897

RESUMO

The release of plastics in nature is an increasing global concern due to their degradation from microplastics (MPs) and even to nanoplastics (NPs), which are being recognized as a potential global threat to humans and environment. This paper summarizes the current knowledge on the effect of different environmental factors on the aggregation of MPs and NPs in aquatic environment. Stability (or extent of aggregation) of MPs and NPs varies with pH, ionic strength, ion type (monovalent, divalent, and trivalent), kind of minerals, and natural organic matter (NOM) of the aquatic environment. Electrostatic interactions between particles at different pH and ionic strength caused by salts of different valents govern the aggregation. In the presence of minerals (or inorganic colloids), net surface charge of mineral and surface potential of MPs and NPs (i.e., positive or negative surface functionality) play important roles in the heteroaggregation of MPs and NPs. In the presence of NOM, additional complex interactions including hydrophobic interactions and bridging are also involved in the aggregation of particles. Understanding the interactions of MPs and NPs of different surface charge with diverse environmental factors at a wide range of environmental conditions is pivotal to assess the mobility and the fate of degraded plastic particles and their risk to human health and ecological systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Interações Hidrofóbicas e Hidrofílicas , Plásticos , Poliestirenos , Água , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 408: 124486, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243654

RESUMO

Electroplating sludge is classified as a hazardous waste due to its extremely high leachability of potentially toxic elements. This study concerns the use of magnesium oxysulfate cement (MOSC) for the stabilisation/solidification (S/S) of Zn-rich electroplating sludge. According to X-ray diffraction and thermogravimetric analyses, Zn was mainly immobilised through both chemical interaction and physical encapsulation in the MOSC hydrates of 5Mg(OH)2·MgSO4.7H2O (5-1-7) phase. The crystal size analysis, elemental mapping, and extended X-ray absorption fine structure (EXAFS) analysis proved that the Zn2+ was also incorporated in the structure of 5-1-7 phase. Unlike Portland cement system, hydration kinetics, setting time, and compressive strength of the MOSC system were only negligibly modified by the presence of Zn, indicating its superior compatibility. Subsequent S/S experiments demonstrated that the MOSC binder exhibited an excellent performance on immobilisation efficiency of Zn (up to 99.9%), as well as satisfying the requirements of setting time and mechanical strength of sludge S/S products. Therefore, MOSC could be an effective and sustainable binder for the treatment of the Zn-rich industrial wastes.

19.
J Hazard Mater ; 400: 123317, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947716

RESUMO

Lead (Pb) and arsenic (As) contaminated soil poses severe threats to human health. This study proposes a novel approach for synchronous stabilisation/solidification (S/S) of Pb and As contaminated soil and explains the immobilisation mechanisms in red mud-modified magnesium phosphate cement (MPC). Experimental results show that incorporation of red mud in MPC binder retarded over-rapid reaction and enhanced compressive strength via the formation of (Al,Fe,K)PO4·nH2O compounds as indicated by X-ray diffractometer (XRD) and elemental mapping. The presence of Pb had a marginal effect on the MPC reaction; however, the presence of As suppressed the generation of MgKPO4·6H2O, leading to a significant delay of setting time and a reduction of compressive strength. Extended X-ray absorption fine structure (EXAFS) analysis proved that Pb2+ strongly coordinated with the PO43-, whereas AsO2- gently coordinated with K+. The MPC binder displayed an excellent immobilisation efficiency for Pb (99.9%), but was less effective for As. The use of red mud enhanced the As immobilisation efficacy to 80.5% due to strong complexation between AsO2- and Fe3+. The treated soils fulfilled requirements of metal(loid) leachability and mechanical strength for on-site reuse. Therefore, red mud-modified MPC can be an effective binder for sustainable remediation of Pb and As contaminated soil.

20.
Chemosphere ; 254: 126860, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957280

RESUMO

Boric acid is one of the most mobile inorganic contaminant species in nature due to its pKa of 9.23. Co-precipitation of borate with hydroxyapatite (HAp: Ca5(PO4)3OH) facilitates the simultaneous removal of borate with co-existing oxoanions in natural waters. The cost of phosphate is an impediment to industrialize the co-precipitation of borate with HAp for treatment of geothermal waters. In the present work, an inexpensive industrial by-product of magnesium ammonium phosphate (MAP) derived from sewage sludge, was examined as a phosphate source. MAP includes 89% pure magnesium ammonium phosphate, resulting in better performance than the pure chemical form of NH4H2PO4, because Mg2+ and Al3+ (trace elements in MAP product) play roles in enhancing the removal rate of borate and lowering the equilibrium borate concentration. These ions have a good affinity with phosphate to nucleate crystal seeds independently of powdery Ca sources. To reduce the bulky volume of solid residues, hot isostatic pressing (HIP) was applied. There is structural water in HAp; therefore, the greatest volume reduction was achieved with 78.3 ± 2.0% (n = 3). Additionally, a synergic effect to suppress the released borate, greater than the sequential combination of calcination and cold isostatic pressing was accomplished in the toxicity contents leaching procedure (TCLP) test. This is not due to larger crystal sizes alone, but it is derived from boron stabilization in HAp at an atomic level by the synergic effect of heating and pressing simultaneously.


Assuntos
Boratos/isolamento & purificação , Precipitação Química , Durapatita/química , Estruvita/química , Boratos/química , Boro/química , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Fosfatos/química , Esgotos/química , Estruvita/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...